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Abstract—A bimodal formuiation is developed for the problem of maximizing the fundamental vibration
frequency of shallow, elastic arches of given span, volume, length, material, and boundary conditions.
Arches with different cross-sectional types are considered, and two simultaneous design variables are used,
namely the cross-sectional area and arch centerline functions. Results are also presented for arches with
circular centerlines.

An effective numerical solution procedure based on successive iterations is constructed, and solutions
are obtained for clamped arches of different lengths and minimum constraint values for the cross-sectional
area. The numerical results show that bimodality of the fundamental vibration frequency of optimized
arches is the rule rather than the exception, and that significant increases of the frequency can be achieved.

1. INTRODUCTION
The vibration properties of a structure determine how it will react to external excitation. In
order to avoid resonance conditions, it may be desirable to distribute the amount of structural
material in such a way that the fundamental natural frequency of vibration is maximized. This
objective is formulated and solved in the present study for shallow elastic arches, using not
only variable cross-sectional area but also the arch centerline function as a design variable.

The optimization of structures with respect to vibration frequencies has received much
attention[1]. Arches are considered in a few of these studies, but up to now only single
functions have been adopted as design variables. Thermann[2] analyzes a simply supported,
extensible, circular arch, using the height of solid, fixed-width arch cross-sections as the design
variable. He considers the problem of minimizing the total volume of material for given
fundamental frequency and includes a constraint of minimum allowable cross-sectional height
in the formulation. The design presented for symmetric vibration of an arch with an opening
angle of 30° attains this minimum cross-sectional height in the central portion of the span.
Smirnov and Troitskii[3] treat a clamped, inextensible, circular arch, in terms of the dual
problem of maximizing the fundamental frequency for given total volume. The cross-section is
assumed to be circular with varying radius. For an opening angle of 180°, the optimal design
takes on the minimum allowable area at three locations, including the center.

In Refs. [4, 5], Blachut and Gajewski use optimal control theory to maximize the fundamen-
tal frequency of clamped, circular arches subjected to uniform normal pressure. Free vibration
constitutes a special case, associated with zero pressure. The arches are assumed to be
inextensible in Ref. [4] and extensible in Ref. [5], and the cross-sections are geometrically
similar along the arch, with a prescribed minimum allowable area. Optimization of frequencies
for symmetric and antisymmetric modes are first carried out separately. Then a bimodal
formulation is presented, in which two frequencies are equal to each other and are maximized
together. Resulting designs are shown for arches with opening angles of 90, 120, and 180°. In all
these cases, the cross-sectional area has local minima at three locations, including the center.

Finally, shallow (extensible) arches with constant cross-section but variable form are
considered by Plaut and Olhoft[6]. The fundamental frequency is maximized for given arch
length and volume. It turns out that the optimal form (center line function) is proportional to
the fundamental vibration mode of a beam with the same end conditions and subjected to a
tensile axial force. If the ends of the arch are clamped, it follows that the optimal form has zero
slope at the ends. However, if the prescribed arch length is greater than a certain value, this
optimal form is no longer unique, and other forms (e.g. circular) are also optimal.
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In the present study, we again consider shallow, elastic arches of given span, length,
volume, material, and boundary conditions. But here, the cross-sectional area is allowed to vary
along the arch, in addition to the variable form (center line function) of the arch, and the
fundamental natural frequency is maximized. In Section 2, the governing equation for vibra-
tions of a shallow arch is presented, and for later comparison purposes lower natural frequencies
for the standard case of a uniform circular arch with clamped ends are determined for different
values of the arch rise. These results show that the fundamental natural frequency is associated
with a symmetric mode for sufficiently low values of the arch rise and an antisymmetric mode
otherwise. Simply supported arches exhibit similar behavior.

This strongly indicates that the fundamental frequency of an optimized arch may cor-
respond to two different modes. In order to pursue this conjecture, the problem is formulated as
a bimodal optimization problem in Section 3, and as in Ref. [7] the governing equations are
derived by the calculus of variations. The mathematical formulation contains single mode
optimization as a special case, and will hence provide the correct solution if the fundamental
frequency of an optimal arch is actually a simple eigenvalue. As an extension relative to earlier
work on optimizing double eigenvalues, two simultaneous design variables are employed in the
current paper: the cross-sectional area function and the form of the arch. A minimum constraint
value is assumed to be specified for the former design variable, and different cross-sectional
geometries are considered. The use of two design variables leads to two simultaneous
optimality conditions, which, together with other equations derived in Section 3 for our
problem, form the complete set of governing equations. The numerical procedure worked out
for solution of this set of nonlinear, strongly coupled integro-differential equations is outlined in the
Appendix.

Before solutions to the general formulation with two design variables are obtained for
clamped arches, we present in Section 4 a number of results for the special case where the arch
form is taken to be circular and only the cross-sectional height is treated as a design variable.
These results show that the optimal designs depend significantly on the prescribed values of the
arch length parameter and the minimum allowable arga. When the length of the clamped arch is
equal to its span, the optimal design for beam vibration is obtained, and a comparison to a
result reported earlier by Karihaloo and Niordson{8] can be made. As the arch length parameter
is increased, the designs change from having minimum area at the center to minimum area at
the center and two symmetrically-located positions. Particularly for small minimum constraint
values, the maximized fundamental frequency is significantly higher than that of the uniform
circular arch with clamped ends.

The general case is treated in Section 5, with varying arch form and cross-sectional height.
Even though symmetry is not assumed, the optimal designs are symmetrical. As in Ref. [6],
where the area is assumed to be constant and only the form is varied, the optimal forms have
zero slope at the clamped ends. For small values of the arch length parameter, the fundamental
frequency is increased substantially above that found in Section 4 for the optimal circular arch.
However, if the arch length is large enough, the optimal form is no longer unique, and in many
cases the circular form is included among the optimal ones. This means that the area
distribution determined in Section 4 is then also optima! in terms of the general problem.

Both for circular arches and for the general problem, there is a limit to the maximum
attainable fundamental frequency. Associated with any given minimum constraint value for the
cross-sectional height, there is a certain value of the arch length parameter, above which the
optimal solution does not change. The frequency then cannot be increased by further increases
in the arch length. These limiting frequencies are associated with an antisymmetric vibration
mode.

The results are summarized in Section 6, and some concluding remarks are given.

2. SHALLOW ARCH VIBRATIONS

We consider the shallow arch depicted in Fig. 1. The arch has length S, span L, form Yo(X),
Young’s modulus E, mass density p, volume V, cross-sectional area A(X), and moment of
inertia I(X). The area and moment of inertia are assumed to be correlated by I = kA®, with the
positive factor k and exponent p depending on the cross-sectional geometry. (In the examples
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Fig. 1. Shallow arch.

presented in Sections 4 and 5, the cross-section will be rectangular with fixed width w and
varying height, which implies k = 1/(12w?) and p =3.)

The slope of the arch is assumed to be small and the axial force induced by deformation is
assumed to be constant along the arch. The arch length S is approximately given by

dYo}
S=L+; j ( dx, )
and the equation of motion is[9]
32 2y L 2
(Y- Yo)] Ea U dYo\* 6Y] 3'Y
[EI axt 1t2ael), 4 dx] jo[(dX) (ax) AX+pAZE=0, @)

where Y(X, T) is the arch configuration at time T. The boundary conditions are

Y _dY,

Y=0, -v=9% - (3a)
Y d*Y,
Y=0, A:’:\;g Ade' (3b)

respectively, at a clamped or simply supported end of the arch. For small, harmonic vibrations
about Yy(X), with mode shape Z(X) and angular frequency {}, i.e.

Y(X, T)=Yo(X)+ Z(X) cos 07, 4)

the resulting linear equation in Z(X) becomes
L -t pL
(EIZ'Y - EY;;[ [ A dX] I ZYLdX - pAQPZ =0, )
[ 0

It is now convenient to introduce the following nondimensional quantities:

_X Yo ,_Z __AL
XS PEy Ty Ty ©
QpL* (S-DL_
2 _ 2 _
W ="pr B=Tmp >0

i.e. coordinate, arch form, vibration mode, cross-sectional area, squared angular vibration
frequency, and arch length parameter, respectively. In (6), r is the radius of gyration of the
uniform arch having the same length and volume, i.e.

r=[k(VILY "2, m

The dimensionless form of the vibrating arch equation (5) becomes

1 -1 1
(a2 + 4y3[[ ' dx] I zypdx = w’az, (8)
0 0
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after use of (6) and integration by parts, taking into account boundary conditions in the form of
z2=0, z’=0, (9a)
z=0, a’2"=0, 9b)

respectively, for clamped or simply supported ends of the arch. Primes now designate
differentiation with respect to x.

The design variables in our nondimensional optimization problem are the cross-sectional
area a(x) and the arch form yq(x), and it is our objective to maximize the fundamental natural
frequency w for given span, length, and volume of the arch. A minimum allowable value, &, will
be prescribed for the design variable a(x).

In nondimensional terms the arch span is equal to unity, and the constraint of given total
volume is expressed by

]
I adx=1. (10)
[} .
The constraint of given arch length, based on (1), is
1
[ orax=g an

where B? is termed the arch length parameter. Notice that although shallow arches are
considered here, the arch length parameter 82 need not be small, as its definition in (6) involves
cross-sectional properties. The minimum constraint to be prescribed for the cross-sectional area
a(x)is a(x)= &, where 0 < & <1, and can be expressed by means of the real slack variable g(x)
as the equality constraint

g'(x) = alx) - & (12)

In mathematical terms, the squared fundamental frequency »” and vibration mode z(x) con-
stitute the eigenvalue and associated eigenfunction of an eigenvalue problem consisting of the
differential equation (8) and a set of boundary conditions (9) specified at x =0 and x = 1. This
problem is easily shown to be self-adjoint, and the Rayleigh quotient for the eigenvalue w? is

expressed by
1 1 -1 1 2
I a®(2")?dx +4U a! dx] U zyy dx]
70 1] 0 .

w = 1
I az’dx
0

It is well known that the Rayleigh quotient is stationary at the mode(s) z(x) among all other
kinematically admissible deflection functions.

For comparison purposes later, let us briefly consider the standard case of a clamped,
circular arch of uniform cross-section. A circular form is the same as a parabolic one for
shallow arches, and we write

(13)

Yo(x) = dex(1 - x), (14)
where the nondimensional arch rise ¢ in (14) is related to 8 by

c= %p. (15)

With yy(x) given by (14) and a(x) =1, plots of the first four natural frequencies w as a function
of ¢ (which, like B, need not be small for shaliow arches) are presented in Fig. 2. The two
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300 4

Fig. 2. First four natural frequencies w vs arch rise ¢ for clamped, circular arches with constant
cross-section. Characteristic mode shapes are indicated.

horizontal lines correspond to antisymmetric (inextensible) vibration, which make the second
term in (8) equal to zero, and hence w independent of c. (Thus, they are also valid for a straight,
clamped beam.) The other frequencies in Fig. 2 are associated with symmetric vibrations, and
their mode shapes change form as ¢ varies. The fundamental frequency corresponds to a
symmetric mode if ¢ <4.464 and to an antisymmetric mode (with « =61.673) if ¢ =4.464. In
the following, we shall determine the designs that make this frequency a maximum.

3. BIMODAL FORMULATION FOROPTIMAL DESIGN

A procedure similar to that used in Ref. [7] is employed to derive the governing equations of
our optimization problem. We allow for the possibility that the fundamental eigenfrequency
is double and is associated with two vibration modes, z,(x) and z)(x). It is convenient to
normalize these modes by

1
I aztdx=1, i=1,2, (16)
0
and to assume that they are mutually orthogonal, i.e.

1
I az;z,dx=0. (17
0

Defining eigenfrequencies w, and o, associated with z, and z, as

w0l = fol o () dx +4Uol ! dx]_onl ziy.';dx]z, i=1,2 (18)

in view of (13) and (16), bimodality of w is expressed by
W = w; i= 1,2. (19)

We construct an augmented functional A by appending to the functional w,? in (18) the
condition w;®=w,® by means of a Lagrangian multiplier y, and by adjoining conditions
(10)(12), (16) and (17) with the use of Lagrangian multipliers pv, , pu(x), (1= ¥)m, ¥n,, and
¥(1 - y)e. Thus, we write

ol o[ ra] [ s
; v{f a? (23)" dx +“Uol a” ""]_]“ol Yo ‘"]2}
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—pv[foladx—l]—KU:)l(y(’,)zdx—Bz]
—pfol p(X[F(x) - e(x)+aldx—(1~ 7)m“: azldx - 1]
- YﬂzUo' az? dx - l] —y(1-y)e Iol az,z; dx. (20)

Note that A reduces to the appropriate functional for single mode optimal design if y =0 (only
2, is then involved) or y = 1 (only z; involved). The mode is then just the fundamental one, and
the subscript is superfluous. The interval for v is

0sy<l, @n

where we have bimodality for 0 < y < 1. The governing equations of the optimization problem
are now obtained as the Euler-Lagrange equations following from the stationarity of A.
With clamped end conditions

7(0)=zi(0) = z(1) = 2y(1) =0,i= 1,2 (22)

(as well as for other standard end conditions for which the Rayleigh expression (13) is valid),
stationarity of A for arbitrary admissible variations of z;, i = 1,2, yields

1 -1 g1
(a®2)' + 4y3[j a”! dx] I Ziyodx = naz; +%eae,(x), i=1,2, (23)
) 0

where e,(x) = yz,(x) and e)(x)=(1-y)z,(x). Multiplying (23);., by 2, and (23);-, by z,,
integrating by parts using the boundary conditions, and subtracting the two equations, we
obtain the relation (1 — 2y)e = 0 upon using (16) and (17). With y# 1/2 in general (the condition
may be checked a posteriori), we get

=0, (24)

which implies that inclusion of the orthogonality condition (17) in our formulation does not
affect any of the governing equations derived from stationarity of A in (20). However, (17)
implies minor changes in the computational scheme. For example, (17) does not allow z, and z,
to become identical, and vy arbitrary, in cases where the actual solution is single modal, see Ref.
{7] where an orthogonality condition was not included in the bimodal formulation.

To determine the Lagrangian multipliers 7, we multiply (23) by z; and integrate by parts
using the boundary conditions. By means of (16) and (18) we then simply identify n; as »?, and
may write (23) in the form

1 -1 ]
(a”z',-’)"+4y{,'[f a”! dx] I zysdx = wlaz, i=1,2. (25)
0 0

Next, we shall derive the optimality conditions corresponding to our two design variables
yo(x) and a(x). It is well known[10] that multiple eigenvalues are generally not differentiable in
the usual sense (Fréchet differentiable) with respect to all possible types of changes in design.
This is the case[11] if the design change has a component perpendicular to the intersection
“surface” w,” = w,” between the eigenvalue hyper-surfaces @ (¥, @) and w,X(yo, @) in the design
space Yo, a. However, seeking the maximum w? of a bimodal eigenvalue, it is only necessary to
consider the special type of design variations 8y, and 8a that confines the varied eigenvalues to
the “intersection surface” w,? = w,’, and hence involves a move along this *‘surface”. The inclusion
of the constraint w,®= w,’ for y#0 and y# 1 in our formulation implies a limitation to such
variations. Assuming that the “intersection surface” w,’= w,’ is sufficiently smooth (Fréchet
differentiable) at its maximum, we may subsequently take the variations of the functional A in the
usual fashion.
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Now, stationarity of A with respect to yg(x) leads to the first optimality condition,

1 -1 1 1
Kkyo(x) = —4” a”! dx] [(l - y)zi I Z1yodx + yzi] 23¥0 dx]. (26)
¢ 0 0

If we multiply (26) by yi(x), integrate by parts, make use of (11), solve for , use the result in
(26), and then differentiate, we get, for «#0,

(-2 [ zsdx+ v [ s
yg(x)=—B2 |0 V) T L T
(l-y)U0 z,yde] +y“o zzy(;dx]

which is an implicit equation for the second derivative of the optimal arch form. The
determination of yy(x) is described in the Appendix.

Neither in the derivation of the governing equations nor in the numerical solution procedure
for the problem considered in this paper is any assumption made concerning symmetry of the
optimal design. However, to discuss possible implications of (27), let us assume for a moment
that both arch ends are either clamped or simply supported, the optimal arch form yu(x) is
symmetric, z;(x) is symmetric, and z,(x) is antisymmetric. Then

@7

1
[ ayax=o, 28)
0 .

and hence, from (26), x =0 if y =1, that is, if the fundamental frequency of the optimal
symmetric design is single modal with an antisymmetric vibration mode. If this is the case, (27),
is invalid, and the optimal arch form y,(x) is not unique. In contrast to this, y5(x) is governed by
(27) if 0= y <1, which corresponds to cases whe_re the fundamental frequency of the optimal
symmetrc design is bimodal or single modal with a symmetric mode. With the use of (28), and
the boundary conditions z,(0) = z,(1) =0 and y,(0) = yo(1) =0, integration of (27) yields

1 -1
yo(x) = Kz,(x), K=—ﬁ’[ L zlyadx] : 29)

i.e. the optimal arch form y,(x) is simply proportional to the symmetric vibration mode z,(x) in
these latter cases. It is noteworthy that the optimal form y,(x) of a clamped arch then has zero
slope at the ends.

We now, return to the general problem. Demanding stationarity of A with respect to variation
of a(x), we obtain the second optimality condition for our problem,

1 -2 1 2
(- pfpar e+ [ atax] [ gax] - o2}
0 0
1 -2 ] 2
+7{Pa"'(25)2+4a'2U a"dx] U zzygdx] —wzzzz}
[i] 0

=plv—u(x), (30)

while stationarity with respect to variation of g(x) gives
u(x)g(x)=0. (€3))

We identify by x, and x. the sub-intervals in which g(x) # 0 and g(x) = 0, respectively, where x,
and x. make up the entire interval 0 < x < 1. For x € x,, we have u(x) =0 by (31) and a(x)> a
by (12), i.e. the cross-sectional area is unconstrained. For x € x., we have a(x) = a from (12),
i.e. the cross-sectional area is constrained. Consequently, for the optimal design, a(x) is
governed by (30) with u(x) =0 for x € x,(a(x) > a), and a(x) is equal to & for x € x..

QQ Val 19 Nn A_F



560 N. OLHOFF and R. H. PLAUT

In order to construct a convergent iterative solution procedure for our problem, it is useful
to introduce the dimensionless bending moment functions

mi(x) = a®(x)z}(x), i=1,2, ' (32)
so as to eliminate the second derivatives 2(x) and obtain a higher numerical value of the power
of a(x) in the optimality condition (30). Doing this, the condition takes the following form in the
unconstrained sub-intervals, where we have u(x)=0:

A(mi’ ‘Y) * a-(pﬂ) + B(Q, Yo, Zb ‘Y) * a—! - C(Z,', Y wza 11) = 0’ X € xus (33)

where the coefficient functions A and C, and the constant coefficient B, are defined by

A(m, y)=(1—y)m?+ ymy, (34a)

i -2 I 2 1 2
Ba,yo 21 =3[ [ o as| fa-[[ avex] +of [ wvies]} o
C(z, y, wv)=v +%2[tl - ‘y)zlz + 1222]. (34¢)

Due to (21) and the fact that » = 0, these coefficients are non-negative.

Denoting by a,(x) those segments of the solution a(x) to the nonlinear, algebraic equation
(33) for which we have a(x)> &, the optimal cross-sectional area function a(x) and the
sub-intervals x, and x. are defined over the entire interval 0 < x <1 by the formula

_fa (x)if >a), x€E€x,
alx)= {&, XEx,. 33)

The expressions for a,(x) in the standard cases of p=1,2, or 3 are easily determined by
solving (33) for a(x) = a,(x)> a, x E x,:

"
p=1: a..(x)=[AZ.B] ; (36a)
A+D 113 A-D 13 3 483 ”2.
p=2; a,‘(x)=[ 2C] +[ C ] R D—[Az—m] 5 (36b)
n
p=3 a(x)= m:#?:]n_—l;] (36¢)

In order to determine the coefficients A, B and C defined by (34), we obtain the modes z;(x)
and moments m;(x) by solution of the differential equation (25) for the vibrating arch with
appropriate boundary conditions, and the optimal arch form y,(x) and its first and second
derivatives are found from the optimality condition (27). It will be outlined below how the
remaining quantities are determined.

If we substitute (35) into the volume constraint (10), we obtain

La,(x)dx+&de=l. 37

Assuming the coefficients A and B to be known, together with the second term in the
expression (34c) for C, (37) constitutes an implicit equation for the Lagrangian multiplier », if
we take (34c) and the appropriate expression for a,(x) in (36) into account. When v is
determined, the function a(x), and thereby the sub-intervals x, and x., are determined by

(34)-(36).
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Substituting (35) into (18), we get

-1 i 2
m.-2=j ol (z'})’dx+&”f (z’;)zdx+4U a,,"dx+d"‘j dx] [I z,»yde] ,i=1,2.
Xy Xe Xy } 4 1]

c

(38)

These equations give us the optimal fundamental eigenvalue w?, which is used in (34c) and also
in connection with the determination of y for (34). Thus,

f w,<wy:ivo=w, y=0
(39)

f eym<wi:w=w, y=1

A value of the Lagrangian multiplier y ensuring a bimodal optimal fundamental frequency
©=w, = w, is determined as a solution to the following equation, which is obtained by
substituting (38) into the bimodality condition expressed as w,’ - w,? = 0: _

I

@l - @ dx+ @ [ (- @ dx

+4[L e 'dx+a”’ de]-l{Uol zzy(;dx]z— [Io' Z\Y'o'dx]z} o @)

Clearly, (40) provides an implicit equation for y, when we substitute into it the appropriate
expression for a,(x) from (36), with A, B, and C expressed by (34).

In summary, the general optimization problem is governed by the eqns (16), (17), (21), (25),
(27) and (34){40), together with appropriate boundary conditions. The value of p, the arch
length parameter B2, and the minimum area a are specified. The unknowns to be determined are
the optimal eigenvalue o?, the optimal cross-sectional area function a(x) (and thereby the
sub-intervals x, and x.), the optimal arch form y,(x), the eigenfunctions z,(x) and z,(x), and the
Lagrangian multipliers » and y. The method of solution is outlined in the Appendix.

4. OPTIMIZATION OF CIRCULAR ARCHES WITHCLAMPED ENDS

We present from now on a number of optimal design results for clamped arches with solid
cross-sections of variable height and fixed width, i.e. the case p =3 is considered. In this
section we only use the cross-sectional area function a(x) as a design variable, and assume that
the form of the shallow arch is circular and given by (14). Heace, for the problem considered
here, (14) replaces (27) and (11) drops out in the mathematical formulation for optimal design
outlined in the previous section. We will call the dimensionless quantity ¢ in (14) the arch rise
parameter, in order to distinguish it from the arch length parameter 82, which is related to ¢ by
(15). The optimal area function a(x) is determined for various values of ¢ and the geometric
(minimum area) constraint &. In all cases, we find the optimal design to be symmetrical within
double precision computational accuracy.

Representative designs a(x) are illustrated in Figs. 3-7, along with associated fundamental

I —
(s>

Fig. 3. Geometrically unconstrained optimal design (& =0) of a clamped straight beam (¢ =0, p =3). The
optimal dimensionless frequency w is » = 59.7 (bimodal), and wfw,, = 2.67.
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T
Y

Fig. 4. Optimal designs of clamped circular arches with ¢ =3 (and p = 3). (a) Design for a = 0.5 (active con-
straint), @ = 56.1 (single modal), ww,, = 1.24. (b) Design for & = 0.2 (active constraint), & = 63.4 (bimodal),
wl @, = 1.40. (c) Optimal design for 0< d < 0,084 (inactive constraint), w = 64.8 (bimodal), ww,, = 1.43.

R l/m/(’”/l/// ////////////// /
& i /////4//?//

Fig. 5. The optimal design of a clamped circular arch with ¢ =6 (and p =3) for 0 a <0.40 (inactive
constraint). The optimal frequency « = 78.7 is bimodal, and ow,, = 1.28.

/WWI
&% ,,,///% iy ////W//

/////

Fig. 6. Optimal designs of clamped circular arches with ¢ =9 (and p = 3). (a) Design for & = 0.8 (active

constraint), = 74.7 (single modal), w/w,, = 1.21. The area function is, in fact, optimal for all problems with

a=0.8 and c 2 6. (b) Design for & = 0.5 (active constraint), » = 81.0 (single modal), w/w,, = 1.31. The area

function is optimal for all problems with @ = 0.5 and ¢ 8. (c) Optimal design for 0 < & <0.18 (inactive
constraint), « = 82.8 (bimodal), w/w,, = 1.34.

"y

'/// ////
/

Fig. 7. The optimal design of a clamped circular arch with ¢ =15 (and p =3) for 0= & <0.01 (inactive
constraint). The optimal frequency = 83.4 is bimodal, and w/w,, = 1.35.
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modes z,(x) and 2y(x) if the solution is bimodal, and the appropriate single mode otherwise. The
optimal fundamental frequencies w of the optimal designs are stated in the figure captions,
together with the ratio w/w., between o and the fundamental frequency w, of a clamped,
circular arch that has constant cross-section and has the same length, span, volume, and
material as the optimal arch. The dependence of w., on ¢ can be seen in Fig. 2.

The special case ¢ =0 corresponds to optimization of a transversely vibrating, clamped,
straight beam with varying height of solid, rectangular cross-sections of fixed width. Only in the
limiting case of geometrically unconstrained design (@ = 0) is the optimal solution bimodal. This
optimal design, which is depicted in Fig. 3, has an inner separation (Type II singularity, see Ref.
[12] for the case p =2) at the center, where the cross-sectional area, bending moment, and
shear force vanish. Each half of the beam is thus a scaled version of the optimal, vibrating
cantilever obtained by Niordson and Karihaloo(8]. (If we square the clamped-clamped beam
eigen frequency  given in the caption of Fig. 3 and transform it to a beam of twice the volume
and fength by means of the formula given in (6), we obtain perfect agreement with the optimal
eigenvalue stated for the cantilever in Ref. {8].)

Results for ¢ =3 and different values of @ are shown in Fig. 4. For @ =0.5, the optimal
design is single modal and the mode is symmetric, as seen in Fig. 4(a). For @ = 0.2, the optimal
design is bimodal (Fig. 4b) and associated with both a symmetric and an antisymmetric
fundamental vibration mode. In both these cases, the geometric constraint is active in the
central portion of the span. For a < 0.084, this constraint is inactive and the optimal (bimodal)
design is shown in Fig. 4(c). This design constitutes in particular the geometrically un-
constrained (@ =0) optimal design for ¢ =3, which thus has finite minimum area (equal to
0.084) in contrast to the solution for ¢ =0 shown in Fig. 3. (The transition from zero to finite
minimum area in the geometrically unconstrained optimal designs is found to take place at a
value of ¢ between 1 and 2.)

If the arch rise parameter has the value ¢ = 6, the geometric constraint a(x) = & is not active
if @ <0.40, and the corresponding optimal (bimodal) design is depicted in Fig. 5. The area
function of this design, which also constitutes the geometrically unconstrained optimal solution
for ¢ = 6, is smallest at midspan (equal to 0.40) like the designs in Figs. 3 and 4(c), but the area
function now exhibits two other local minima.

Results for ¢ = 9 associated with different a values are presented in Fig. 6. For @ = 0.8 and
0.5 (Figs. 6a, b), the designs are single modal with an antisymmetric mode. For & <0.21 (Fig.
6¢), the geometric constraint is inactive and the design is bimodal. The area of this geometric-
ally unconstrained optimal design for ¢ =9 is now smaller (a =0.18) at the two symmetrically
placed locations than at mid-span (a = 0.34).

Finally, the optimal design for ¢ = 15 and & < 0.01 is depicted in Fig. 7. The optimal design
is bimodal and has smaller area (a =0.01) at two symmetrically placed locations than at
midspan (a = 0.18). As the arch rise parameter is increased further, the cross-sectional area of
the optimal design shrinks to zero at midspan and two symmetrical locations, where hinges of
zero bending moment develop.

Optimal values of the nondimensional fundamental frequency, w, are plotted versus & in
Fig. 8 as solid curves. The dashed curves represent second natural frequencies of optimal
designs for which the fundamental frequency is single modal. (In fact, we also computed the
third natural frequencies in order to check their assumed non-coalescense with the optimal
fundamental frequencies.) The fundamental frequencies w,, and the second natural frequencies
for circular arches of constant cross-section correspond to fully constrained design and can be
identified at the right hand side of the figure, where a = 1. These frequencies for uniform
circular arches were earlier depicted by the two lower curves in Fig. 2. The frequencies at the
left hand side of Fig. 8, where & =0, are those that correspond to geometrically unconstrained
optimal design.

For the cases ¢ =0 and ¢ = 1 in Fig. 8, the optimal designs for 0 < & <1 are associated with
a symmetric fundamental vibration mode, and only the geometrically unconstrained design
(a@ =0) is bimodal. For ¢ =2, 3 and 4, we obtain designs with a single symmetric fundamental
mode if & is greater than the value at which the solid and dashed curves coalesce, and we have
bimodal solutions to the left of those points in Fig. 8. To the left of the points marked by an x,
the geometric constraint is inactive and the optimal designs and frequencies then do not vary
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Fig. 8. Natural frequencies w vs minimum area constraint value & for optimal clamped circular arches of

different arch rise ¢. Solid curves indicate optimal fundamental frequencies, and dashed curves denote

second natural frequencies. x-marks indicate transition between a-dependent and a-independent bimodal
designs.

with a. For example, as discussed in relation to Fig. 4(c), this threshold between geometric
constraint dependent and independent optimal designs is @ = 0.084 when ¢ = 3.

For ¢ =4, the optimal designs are seen to be bimodal for a broad range of & values. Only for
values of & close to 1, implying nearly uniform designs, are the solutions single modal (with a
symmetric mode). Now, if ¢ is taken to be ¢ = 4.464, then the uniform design is bimodal (see
the intersection point for the two lower curves in Fig. 2), and when circular arches with
¢ =4.464 are optimized, we find that the optimal designs are bimodal for all @ values
(0= a =1). Increasing c slightly beyond the value of 4.464, the optimal designs are bimodal for
a broad range of & values, with the exception of values of & close to 1, where the optimal single
mode designs are now associated with an antisymmetric fundamental vibration mode. As ¢ is
increased further, the range of & values corresponding to a single fundamental frequency with
an antisymmetric mode increases in size.

For ¢ =6, for example, the optimal fundamental frequency w is defined by the curve ABC
in Fig. 8. In segment AB, it is associated with a single, antisymmetric mode, while it is bimodal
in segment BC. For ¢ =9, the governing curve is ABDE, with an antisymmetric mode in
segment ABD.

Note that segment AB is valid for both ¢ =6 and ¢ =9, so that the optimal designs in this
range are the same for both cases. This means, e.g. that the optimal area function associated
with @ = 0.8 in Fig. 6(a) (for ¢ =9) is also valid for the case ¢ = 6. But this implies further that
the a = 0.8 design in Fig. 6(a) is also optimal for all values of ¢ higher than ¢ = 6. Along similar
lines, the optimal area function with & = 0.5 in Fig. 6(b) (for ¢ =9) is valid for ¢ =8,9, .. ..

As ¢ is increased, the & range for single (antisymmetric) mode solutions increases, and the
solid curves for the optimal fundamental frequencies approach the limiting curve ABDF (where
F is only very slightly above the frequency for geometrically unconstrained design with-c = 50).

The existence of a limiting curve can be explained easily, If the optimal design turns out to
be symmetrical and the fundamental eigenvalue w,? is associated with a single antisymmetric
mode 2,(x), the second term on the left hand side of (25) is zero for i = 1, and we have y=0. It
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then follows that yo(x), and hence c, are not involved in the equations which govern the optimal
cross-sectional area function a(x). Each point on the limiting curve ABDF in Fig. 8 is then
valid for sufficiently high values of ¢. In other words, for a given geometric constraint value a,
the fundamental frequency of a clamped circular arch cannot be increased above that on the
limiting curve, no matter what value ¢ has.

5. OPTIMIZATION OF FORM AND CROSS-SECTIONAL AREA
OF CLAMPED ARCHES

As in the previous section, we consider the case of clamped ends and p = 3, but now we use
both the arch form yy(x) and the cross-sectional area a(x) as design variables. The arch length
parameter B2 is specified. However, results are presented in terms of the parameter ¢ defined
by (15), in order to facilitate comparisons with the previous results for circular arches.

Optimal fundamental frequencies, w, for our problem with two design variables are plotted
versus a in Fig. 9 as solid curves. The dashed curves again represent second natural
frequencies for single mode optimal designs, while the dash-dotted curves for ¢ =1, 2 and 3
give optimal frequencies for the circular arch, for comparison purposes, and are repeated from
Fig. 8. The curve for ¢ = 0 is also the same as in Fig. 8, since the case of the straight beam does
not involve the second design variable yy(x); its second frequency is plotted in Fig. 8 and is not
shown in Fig. 9.

For ¢ =1, 2 and 3, the optimal designs are associated with a single symmetric mode if 4 is
high enough, and the solution is bimodal otherwise. The optimal forms and cross-sectional area
functions are all found to be symmetric. It then follows from (29) that the optimal forms are
proportional to the fundamental symmetric mode (as long as the simple or double fundamental
eigenfrequency is associated with such a mode) and the optimal forms thus have zero slope at
the ends.

0 01 02 03 04 05 06 07 08 09 10

a

Fig. 9. Natural frequencies « vs minimum area constraint value & for clamped arches optimized both with
respect to form y,(x) and cross-sectional area a(x). Parameter ¢ denotes the rise of a corresponding
circular arch having the same length as the optimal arch. Solid curves indicate optimal fundamental
frequencies and dashed curves denote second natural frequencies, when both yx(x) and a(x) are design
variables. Dashed-dotted curves represent optimal fundamental frequencies (from Fig. 8) when only a(x) is
a design variable. x-marks indicate transition between a-dependent and -independent bimodal designs.
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For ¢ = 4, the optimal fundamental frequencies lie on curve AF in Fig. 9, which is the same
limiting curve as ABDF in Fig. 8. The optimal area functions a(x) are then the same as those
corresponding to the limiting curve in Fig. 8. For example, if ¢ = 4 and « is equal to 0.8 or 0.5,
the optimal area functions are the same as those shown in Figs. 6(a, b), respectively; also, if c is
large enough, e.g. if ¢ =6,7,..., when a@ = 0.8 as in Fig. 6(a), or if ¢ =8,9,..., when @ = 0.5 as
in Fig. 6(b), the circular form is included among the optimal ones. Thus, for ¢ =4 the arch
forms yo(x) are not unique. The optimal fundamental frequencies lying on curve AF are then
generally single modal with an antisymmetric mode, but for each & value there is an arch form
(with zero slope at the ends) for which the optimal frequency is bimodal, and then also
associated with a symmetric mode.

While the optimal frequencies on curve AF are uniquely determined by the optimal
cross-sectional area function a(x) and its associated antisymmetric fundamental vibration
mode, which is independent of yy(x), the second natural frequencies with symmetric modes not
only depend on a(x), but also on yy(x). Since y,(x) is not unique for ¢ >4, second natural
frequencies are not indicated in Fig. 9 for such ¢ values.

Some optimal forms and cross-sectional areas are illustrated in Figs. 10-13, along with the
associated fundamental mode(s). In Figs. 10, 11, 12(c), the geometrically unconstrained solu-
tions for ¢ = 1, 2 and 3 are shown, respectively. As seen by the existence of the X-marks in Fig.
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Fig. 10. The optimal design (form and cross-sectional area) of a clamped arch with ¢ =1 (and p =3) for
0= a =0.03 (inactive constraint). The optimal frequency w = 71.1 is bimodal, and e, =2.73.
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Fig. 11. The optimal design (form and cross-sectional area) of a clamped arch with ¢ =2 (and p =3) for
0= a <0.07 (inactive constraint). The optimal frequency w = 77.6 is bimodal, and wfw,, = 2.24.
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Fig. 12. Optimal designs (forms and cross-sectional areas) of clamped arches with ¢ =3 (and p =3). (a)
Design for @ =0.5 (active constraint), w=78.7 (bimodal), wlw,, =1.74. (b) Design for & =0.2 (active
constraint), « =81.9 (bimodal), ow,, =1.81. (c) Optimal design for 0= & =<0.10 (inactive constraint),
- w = 82.0 (bimodal), ofw,, = 1.81.
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. Fig. 13. Optimal design (form and cross-sectional area) of a clamped arch with ¢ =9, @ =0 (and p =3). The
optimal frequency « = 83.5 is single modal for the arch form shown, and «w,, = 1.35. The cross-sectional
area function is optimal for & =0 and any ¢ = 4, but the optimal arch form is then not unique.

9, there are no cross-sections with zero area in these designs, i.e. the constraint is inactive (and
the optimal designs are a-independent) for sufficiently small values of & The cross-sectional
area exhibits three local minima.

Geometrically constrained optimal designs are presented for ¢ =3 in Figs. 12(a, b), with
a@=0.5 and 0.2, respectively. It is interesting to compare the cross-sectional area distributions
in Fig. 12 with those in Fig. 4, where the arch form is circular but the same combinations of ¢
and & are prescribed. For a =0.5, the optimal circular arch is associated with a single
symmetric mode, whereas the optimal solution in the general case is bimodal. For @ = 0.2 and 0,
the optimal circular arches have smallest area in the center of the span and increasing area
toward the clamped ends, while the optimal area functions in Figs. 12(b, ¢) have three local
minima.

Finally, Fig. 13 illustrates the optimal cross-sectional area function a(x) at point F in Fig. 9,
together with an optimal arch form function y,(x) for the case ¢ = 9. The area function a(x) in
Fig. 13 is equal to zero at three inner hinges of zero bending moment (Type I singularities[12])
and is valid for ¢ = 4. For any specified values of ¢ in this range, there is a class of forms yy(x)
which, together with the optimal area function a(x), will be optimal, i.e. will possess the highest
possible fundamental frequency, o = 83.5.

6. SUMMARY

The optimization of the fundamental frequency of shallow arches depends on the arch
length parameter 8* (or, equivalently, on the parameter ¢ defined by (15)) and on the value of
the minimum allowable area 4. Optimal frequencies associated with @ =0 and a=1 are
presented in Fig. 14 as a function of c, together with fundamental frequencies for standard
(comparison) arches. These results (for clamped arches) can be described in terms of four
classifications.

(1) Arches of circular form and constant cross-section

Curve ABK in Fig. 14 represents the lowest frequency associated with a symmetric vibration
mode of a uniform circular arch, whi'e curve HDBC represents the lowest frequency for an
antisymmetric mode. (These curves arc also shown in Fig. 2.) The fundamental frequency of
the arch type chosen here for comparison purposes is thus given by curve ABC, and our
objective has been to raise this curve as much as possible, without changing the span, length,
volume, and material of the arch.

(2) Arches of optimal form and constant cross-section

If only the arch form is used as a design variable, the optimal w-curve is given by ADBC,
see Ref. [6]. This corresponds to @ =1 in Fig. 9. In segment AD, the optimal forms are unique
and have zero slope at the ends; in segment DBC, they are not unique (e.g. the circular form is
optimal in segment BC).

(3) Arches of circular form and optimal cross-sectional area distribution

The results of Section 4, in which the arch form is specified to be circular and only the
cross-sectional area function is used as a design variable, lead to curve EF in Fig. 14 if no
geometric constraint of minimum area is invoked (i.e. @ = 0 in Fig. 8). A bimodal solution exists
for all values of ¢. As ¢ increases, the curve approaches the limiting value o = 83.5, which
corresponds to point F in Fig. 8. The increase in fundamental frequency from that of a uniform
circular arch (curve ABC) is 167% for ¢ =0 and 35% for large values of c.
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Fig. 14. Fundamental frequencies w vs parameter ¢ different arches with clamped ends. Curve ABC: o
for arches of circular form and constant cross-section (a = 1). Curve ADBC: Arches of optimal form and
constant cross-section (a=a =1). Curve EF: Arches of circular form and optimal, geometrically un-
constrained cross-sectional area distribution (a =0). Curve EGF: Arches of optimal form and optimal,
geometrically unconstrained area distribution (& =0). The ordinate for the point A is « =22.373, the
ordinates for the points H, D, B and C are w =61.673, and the ordinates for the points G and F are
@ = 83.5. The abscissa for the point D is ¢ = 3.69, the abscissa for the point G is ¢ = 4, and the abscissa for
the point B is ¢ = 4.464.

(4) Arches of optimal form and cross-sectional area distribution

Curve EGF in Fig. 14 represents the geometrically unconstrained results from Section §
(see @ =0 in Fig. 9), in which the arch form yy(x) and area a(x) are both treated as design
variables. In comparison with the circular arches with optimal area distribution (curve EF), the
improvement in the fundamental frequency is only significant for small values of ¢. However,
relative to the uniform circular arch, the fundamental frequency is increased by 173% for ¢ = 1,
124% for ¢ =2, 81% for ¢ =3, and 35% for ¢ = 4.464.

In addition to the above summary of the optimal eigenvalues, we should also comment on
the general characteristics of the optimal area distributions. For small values of ¢, the arch has
smallest area in its central portion and then increasing area toward the ends (e.g. see Figs. 4, 10
and 11). As ¢ increases, the designs form bulges on both sides of the center (e.g. see Figs. 5, 6
and 12). The locations and extent of these bulges depend on & (e.g. see Fig. 6). For sufficiently
high values of c, the area of geometrically unconstrained optimal designs becomes equal to zero
at three points of the span (the center and two symmetrically placed locations), where hinges
develop.

It is noteworthy that the geometrically unconstrained, optimal arches in Sections 4 and 5 do
not have points of zero area for a range of ¢ values. However, if only a single modal
formulation had been used, such points would be present in all the geometrically unconstrained
designs, and most of these designs would be non-optimal. In fact, only in cases of bimodality for
which the coalescence of eigenvalues takes place in the very limit of geometrically un-
constrained design (i.e. as & —+0) is a single mode formulation sufficient. Some cases of this type
can be found in Ref. [13].

Finally, two features of the results of this investigation should be reiterated. First of all,
when the optimal form is unique, it has zero slope at clamped ends and is therefore convex in
regions adjacent to such ends. Secondly, the optimal solutions are generally bimodal (i.e. the
fundamental frequency is a double eigenvalue). Bimodal solutions were found previously for
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buckling optimization of a clamped column{7]. The present investigation shows that a bimodal
formulation may also be required when optimizing a continuous structure with respect to
vibrations.
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APPENDIX

Here we outline the procedure developed for solution of the equations governing the bimodal optimization problem with
v(x) and a(x) as design variables. The solution procedure for the problem where only a(x) is a design variable is
contained as a special case. The procedure is numerical and consists of successive iterations based on a finite difference
formulation of equations obtained by a formal integration of the problem. We first give an account of the formal integration
and then present the iteration scheme.

Integrating the vibrating arch equation (25) twice, we get

1 -1 1
a’z';+4yo[f a"dx] f zyedx+a;+ bx=fx), i=1.2, (Al
0 [1]

where a; and b, i = 1,2, are integration constants to be determined by the boundary conditions anc “(x), i=1,2. is taken

to be
x ¢ [ 3
f,'(x)=w|-2[J‘ j az,-dnd{—xj I azidndfj, i=12, (A2)
o Jo 6 Jo

so that £;(0) = f;(1) = 0. If both a,ch ends are simply supported, we will then have g, = b; =0, i = 1,2, but if other boundary
conditions are specified, a; and b, will generally be different from zero.

Assuming a(x), yo(x), and fi(x), i=1,2, to be known, the second order differential equation (A1) can now be
discretized along with the given set of boundary conditions such that we obtain a system of linear, algebraic equations for
the discrete values of z(x) and the constants a; and b. Solving this system of equations, we obtain z(x), i=1,2, and
thereby also 2(x) and m;(x).

It should be noted that the coefficier’ wuatrix for the set of algebraic equations for the discrete values of 2,(x) and the
constants a; and b; is generally fully p~.ia=d, since z(x) appears under an integral sign in the second term on the r.h.s. of
(A1). This can be avoided by moving this term to the r.h.s. of (A1) so as to include it in the f;(x) expression, or, for one of
the cases (i = 1 or i = 2), by making possible symmetry assumptions. However, for the examples presented in Sections 4
and 5, we did not want to lose possible non-symmetric optimal designs, and it turned out that rearranging (A1) as described
generally led to unacceptable inaccuracies in extensible modes, irrespective of whether the integration leading to (A2) was
performed in alternative ways.

The arch form yy(x) is obtained by integrating the optimality condition (27) twice, i.c.

1 1
(1~ y)zx) [ z)ypdx + y2(x) I zyypdx
Yolx) = a+ bx— B? e 3 2 7,
a-p[ [ aias] 4o [ ]

(A3)
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where the integration constants a and b are determined by the boundary conditions yo(0) = yo(1) = 0. If the arch ends are
clamped or simply supported, we have a = b =0. If at a certain stage of the iterative solution procedure we found that
y=0and f{ z,y;dx =0, or y=1and [} z,y;dx =0, implying that (A3) is no longer valid, i.c. that y,(x) is non-unique, we
checked whether a(x) was symmetrical (which always turned out to be the case in our examples), and then applied (29)
(with 2/(x) denoting the symmetric mode) in order to determine uniquely one of the members of the class of optimal ye(x)
functions.

For the general arch optimization problem associated with given values of & and 8 (and p =3 in our examples), we
have constructed the following scheme of successive iterations:

START: Assume yo(x), a(x), z(x), v, v and w;.
I Compute f(x) from (A2).
I Determine 2(x) from (A1), orthonormalize these functions according to (16) and (17), and compute z(x).

III Compute yi(x) and yi(x) from (A3) and 27). (If (A3) and (27) are invalid, determine yo(x) from (29) if a(x) is
symmetric, and compute yi(x).) Normalize yo(x) and yi(x) such that (11) is satisfied.
Go to 1 if yo(x) and hence zi(x) have not converged within the inner loop I-II.

IV Compute m;(x) from (32).

V  Compute A and B from (34a,b).

VI Compute C from (34c). Compute a(x) (and thereby a,(x), x,, and x.) from (35) and (36¢). If (37) is not satisfied
for the applied value of », determine a new value of » as part of a Newton-Raphson procedure to meet (37), and
repeat VI.

VII Compute A, B and C from (34), a,(x) from (36¢), and o; from (38), for different values of y, 0sy<L If
0 <w; 0r wy<w forall yEOsy=<1,gotoX. ]
VIII Compute A, B and C from (34), and a,(x) from (36¢). If (40) is not satisfied for the applied value of v, determine
a new value of y as part of a bisection procedure to meet (40), and repeat VIIL
IX Compute w\(= ) from (38) for the solution v, 0 < y <1, obtained in VIII. Set v = w;.
Goto V,if v, and hence », a{x), x, and x,, have not converged within the inner loop V-IX. Else go to XI.
X fw<oforall yEOsysl,setw=w,and y=0.If or<w, forall yEO0sy<l,set w=w,and y=1.
XI Gotolif w, and hence all other iterates, have not converged within the main loop I-XI.

END

If yo(x) is not treated as a design variable, but is specified, step Il and the subsequent “go to” statement are bypassed.

In order to obtain the locations of the constrained intervals accurately, and for precise modeling of functional behavior,
the number of stations in the interval 0= x <1 was taken to be large, and the computations were performed in double
precision. The numerical stability of the solutions obtained was checked through computations based on different numbers
of equally spaced stations.



